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Abstract
We study the time evolution of a charged particle in a Penning trap in the
framework of open quantum systems. The interaction with the environment
is taken into account by imposing Lindblad operators which are linear in the
canonical variables. For the special case of a proton in an asymmetric Penning
trap, we compare the dynamics with earlier results obtained from the unitary
time-dependent Schrödinger equation. A possibility of estimating the spatial
decoherence time of the system is discussed, and approximate decoherence
time scales are given for different ions.

PACS numbers: 03.65.−w, 03.65.Sq, 03.65.Yz, 37.10.Ty

1. Introduction

Penning traps provided an enormous improvement in the field of high-precision measurements
performed on charged particles. Among many examples, one can mention their application
in high-precision determination of fundamental constants [1, 2] and mass measurements,
see e.g. [3, 4] for a recent detailed review. Penning traps are also used in the ATRAP
and ATHENA projects [5, 6] at CERN aiming for production and, eventually, spectroscopy
of cold antihydrogen. As a further exciting example, we would like to mention quantum
information processing with traps, as suggested in [7], which was successfully demonstrated
experimentally on beryllium [8] and calcium [9–12] ions in a linear Paul trap. Penning traps,
however, also have certain experimental advantages in this context [13, 14], and schemes for
their use in quantum computation have been recently proposed [15–19].

Penning traps are, however, not only indispensable in many experimental setups. The
dynamics of a charged particle in a Penning trap shows interesting features also from a
theoretical point of view. Since the Hamiltonian of such a system is quadratic in the
canonical variables, some rather fundamental quantum mechanical aspects can be approached
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analytically. This was successfully explored during the past few years, e.g. in phase space
dynamics calculations [20] or derivations of specific classes of coherent [21], squeezed [22], or
Schrödinger cat [23, 24] states. In the present work, we demonstrate that the reduced dynamics
is also analytically solvable in the presence of an environment, if certain conditions on the
latter are imposed. While dissipation due to radiation damping or coupling to an external
circuit are known to be quite weak [25], there are also other possible sources for dissipation
and decoherence such as e.g. scattering off residual gas atoms (collisional decoherence), which
motivated the present study.

The paper is organized as follows: in section 2, we present the model based on the
Markovian master equation of Lindblad type [26] from which the equations of motion are
derived, and give the solutions of the latter. In section 3, the special case of a proton in an
asymmetric trap is considered, and the time evolution of the dispersions in coordinates and
momenta is given explicitly in the zero temperature limit. Three particular initial states are
considered: squeezed states as well as even and odd Schrödinger cat states, and the results
for all three cases are compared to those obtained in [23] within a unitary picture, thus clearly
illustrating the environmental effects. In section 4, we discuss how information about the
decoherence of the system, induced by the presence of an environment, can be estimated and
give approximate decoherence time scales for different charged particles. A brief summary is
made in section 5.

2. Non-unitary equations of motion

The Hamiltonian of a charged particle with mass m and charge q in a Penning trap reads

H = p2

2m
+

ωc

2
(xpy − ypx) +

m

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
, (1)

where ωc = qB/m (B being the magnetic field strength in the trap) is the cyclotron frequency
and ωz the axial frequency, and the frequencies ωx, ωy are given by

ω2
x = ω2

c

4
− ω2

z

2
(1 + β), (2a)

ω2
y = ω2

c

4
− ω2

z

2
(1 − β), (2b)

where −1 < β < 1 is the asymmetry parameter. Here and in the following, the spin motion
is completely separable from the dynamics and hence it is not considered in our calculations.
To obtain the equations of motion in the presence of an environment, we solve the following
Lindblad-type Markovian master equation [26] for the density matrix:

dρ

dt
= − i

h̄
[H, ρ] +

1

2h̄

∑
j

([
Vjρ, V

†
j

]
+

[
Vj , ρV

†
j

])
. (3)

The Lindblad operators Vj are chosen to be linear superpositions of the canonical coordinates
and momenta with complex coefficients ajk, bjk:

Vj =
3∑

k=1

(ajkpk + bjkrk), V
†
j =

3∑
k=1

(a∗
jkpk + b∗

jkrk), j = 1, . . . , 6, (4)

where the number of the Lindblad operators is limited by the dimension of the problem at
hand. One should mention that this general approach is, in fact, well known, especially
in the field of nuclear physics where mostly one-dimensional [27–29] and two-dimensional
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[30, 31] models of such form have been widely used to phenomenologically describe the
damping of collective modes in deep-inelastc heavy ion collisions. The same formalism has
also been used in several more general quantum mechanical discussions [32–37]. However,
to the best of our knowledge, it has not been studied in connection with Penning traps before.

The coefficients ajk, bjk give rise to a number of phenomenological constants that appear
in the equations of motion. The dynamics can be simplified if we make certain assumptions
about the heat bath. In particular, we demand the system–environment interaction to be
uniform, i.e. that the damping in a certain coordinate or momentum does not affect the time
evolution of any other coordinate and momentum (and in the same way for the variances). To
express these physical conditions technically, we define, in terms of the above coefficients, the
vectors

ak = (a1k, . . . , a6k)
T, bk = (b1k, . . . , b6k)

T, k = 1, . . . , 3, (5)

and introduce the scalar product

〈f, g〉 =
6∑

i=1

f ∗
i gi . (6)

The relations to hold can then be written as follows:

Im〈ak, al〉 = 0, k, l = 1, . . . , 3, (7a)

Im〈bk, bl〉 = 0, k, l = 1, . . . , 3, (7b)

Re〈ak, bl〉 = 0, k, l = 1, . . . , 3, (7c)

Im〈ak, bl〉 = 0, if k �= l, (7d)

Re〈ak, al〉 = 0, if k �= l, (7e)

Re〈bk, bl〉 = 0, if k �= l. (7f )

For convenience, we introduce the following abbreviations for the non-vanishing scalar
products above:

λk = −Im〈ak, bk〉, Drkrk
= h̄

2
Re〈ak, ak〉, Dpkpk

= h̄

2
Re〈bk, bk〉. (8)

They are often referred to as ‘phenomenological dissipation constants’ (λk) and ‘diffusion
coefficients’

(
Drkrk

, Dpkpk

)
. Another necessary assumption is that of weak coupling of the

system to the environment since master equations of the form (3) are valid within this limit
only [38]. In the given case, this means, for example, that the values λk should be much
smaller than the typical frequencies of the considered system.

The equations of motion for the expectation values of an operator A can now be obtained
by transforming the master equation (3) to the Heisenberg picture,

dA

dt
= i

h̄
[H,A] +

1

2h̄

∑
j

(
V

†
j [A,Vj ] +

[
V

†
j , A

]
Vj

)
, (9)

and by introducing the vector of the phase space expectation values η = (〈r〉, 〈p〉)T and
evaluating the commutators above for all of its components, the equations of motion for the
first moments take the form

dη

dt
= �η, (10)
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where � is the time evolution matrix

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 −ωc/2 0 1/m 0 0
ωc/2 −λ2 0 0 1/m 0

0 0 −λ3 0 0 1/m

−mω2
x 0 0 −λ1 −ωc/2 0

0 −mω2
y 0 ωc/2 −λ2 0

0 0 −mω2
z 0 0 −λ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

This corresponds to the result recently obtained for unitary time evolution in a symmetric
(β = 0) Penning trap (see equation (8) in [21], where we identify b = ωc/2, b2 + ν = ω2

x =
ω2

y,−2ν = ω2
z and note that the mass was set to unity in the latter reference), where now the

dissipative interaction with the environment gives rise to the diagonal elements of �. Given
some initial conditions η(0), the solution of (10) is straightforward:

η(t) = e�tη(0). (12)

The equations of motion for the second moments,

σAB = σBA = 1
2 〈AB + BA〉 − 〈A〉〈B〉, (13)

are derived from the Heisenberg representation of the master equation in the same manner,
i.e. by inserting products of the components of η into (9) and evaluating the commutators.
The result can be written in compact form by means of the covariance matrix σij , where
i, j = 1, 2, 3 correspond to the coordinates x, y, z and i, j = 4, 5, 6 to the momenta px, py, pz:

dσ

dt
= �σ + σ�T + 2D, (14)

where D = diag
(
Dxx,Dyy,Dzz,Dpxpx

,Dpypy
,Dpzpz

)
. This equation can be solved with the

same ansatz as in the two-dimensional case [30, 31]:

σ(t) = exp(�t)(σ (0) − 
)(exp(�t))T + 
, (15)

where σ(0) is the initial covariance matrix and 
 is a symmetric matrix which is determined
from the following system of linear equations:

�
 + 
�T = −2D. (16)

In the next section, we will compare the time evolution derived above with earlier results
obtained from the time-dependent Schrödinger equation for a better illustration of the
environmental effects.

3. Comparison with earlier results

We will consider the same example as in [23], where the motion of a proton in an asymmetric
Penning trap was studied. In the latter reference, the parameters of the Hamiltonian (1) were
taken as follows (see also table II in [25]):

ωc = 483.97 MHz, ωz = 63.22 MHz, (17)

and the asymmetry parameter was chosen to be β = 0.3. We will also use the same units as
in [23] throughout this section,

[t] = 4.21 × 10−9 s, [r] = 1.63 × 10−8 m, [p] = 6.48 × 10−27 kg m s−1, (18)

which implies that the proton mass and h̄ are set to unity. Further, we note that due to the
form of the Hamiltonian and the restrictions imposed on the environment, the motion in the
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Table 1. Variances corresponding to the three classes of initial states considered here as they
were found in [22, 23]. The abbreviations used below are ω2

0 = 0.25ω2
c − 0.5ω2

z , �+ =
tanh(|αx |2 + |αy |2), �− = coth(|αx |2 + |αy |2), where αx, αy are the in general complex mode
amplitudes. Throughout this section we set αx = αy = 1/3. Note that the values in the second
and third columns are dimensionless and have to be multiplied with the square of the characteristic
length unit (for σri rj ), the square of the characteristic momentum unit (for σpipj

) and, respectively,
with the characteristic unit of action (for σripj

).

Squeezed Even Schrödinger cat Odd Schrödinger cat

σxx h̄/(mωc)
ω0
ωx

(Re[αx(αx + �+α
∗
x )] + 0.5)

ω0
ωx

(Re[αx(αx + �−α∗
x )] + 0.5)

σyy h̄/(mωc)
ω0
ωy

(Re[αy(αy + �+α
∗
y )] + 0.5)

ω0
ωy

(Re[αy(αy + �−α∗
y )] + 0.5)

σpxpx
h̄mωc/4 ωx

ω0
(Re[αx(−αx + �+α

∗
x )] + 0.5) ωx

ω0
(Re[αx(−αx + �−α∗

x )] + 0.5)

σpypy
h̄mωc/4 ωy

ω0
(Re[αy(−αy + �+α

∗
y )] + 0.5)

ωy

ω0
(Re[αy(−αy + �−α∗

y )] + 0.5)

σxy 0 ω0√
ωxωy

Re[αx(αy + �+α
∗
y )]

ω0√
ωxωy

Re[αx(αy + �−α∗
y )]

σxpx
0 Im[αx(αx + �+α

∗
x )] Im[αy(αx + �−α∗

x )]

σxpy
0

√
ωy

ωx
Im[αy(αx + �+α

∗
x )]

√
ωy

ωx
Im[αy(αx + �−α∗

x )]

σypx
0

√
ωx

ωy
Im[αx(αy + �+α

∗
y )]

√
ωx

ωy
Im[αx(αy + �−α∗

y )]

σypy
0 Im[αy(αy + �+α

∗
y )] Im[αy(αy + �−α∗

y )]

σpxpy
0

√
ωxωy

ω0
Re[αx(−αy + �+α

∗
y )]

√
ωxωy

ω0
Re[αx(−αy + �−α∗

y )]

z-direction completely decouples from the dynamics in the xy-plane. Hence, the former
reduces to a one-dimensional quantum oscillator with Lindbladian damping [27]. For the
dynamics in the xy-plane, we assume the damping to be essentially in the cyclotron motion,
and bearing in mind the imposed weak coupling limit, we set λ1 and λ2 to be of the order of
10−3ωc. For the diffusion coefficients, in general, the temperature-dependent expressions are
discussed e.g. in [27, 29, 33],

Drkrk
= h̄λk

2mωk

coth

(
h̄ωk

2kT

)
, Dpkpk

= h̄λkmωk

2
coth

(
h̄ωk

2kT

)
, (19)

where T is the temperature and k the Boltzmann constant, but for simplicity we will consider
the zero-temperature limit at this point, so that the diffusion coefficients become temperature
independent:

Drkrk
= h̄λk

2mωk

, Dpkpk
= h̄λkmωk

2
. (20)

It should be mentioned that these coefficients cannot be chosen arbitrarily but have to obey
some constraints which are related to the preservation of the positivity of the density matrix
and the uncertainty relation [39]. The next step is to specify the initial conditions. Following
[23], we will consider three different kinds of initial states: squeezed states as well as even and
odd Schrödinger cat states. The initial variances corresponding to these states were found in
[22, 23] and are summarized in table 1. Figures 1 and 2 show the calculated time evolution of
the same dispersions as considered in [23] for different dissipation strengths and initial states.
Our results coincide with those obtained therein in the limit λ1 = λ2 → 0 (up to a numerical
conversion factor in the time scale [40]), and at the same time the environmental effects are
clearly visible in the case of non-vanishing λ1, λ2. They manifest themselves in a very natural
way that one would expect, namely in the amplitude damping of the oscillations.
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Figure 1. Time evolution of different dispersions for a proton in a Penning trap, initially prepared
in a squeezed state. The upper-left panel shows the time evolution of the diagonal elements σxx

(the three lower curves) and σpxpx (the upper curves) in the limit λ1 = λ2 = 0 (solid lines) and for
two different dissipation strengths: λ1 = λ2 = 10−3ωc (dashed lines) and λ1 = λ2 = 2 × 10−3ωc

(dotted lines). The other three panels show the corresponding time evolution of the off-diagonal
elements σxpx (solid lines) and σypy (dashed lines) for the same dissipation strengths, λ1 = λ2 = 0
(upper right), λ1 = λ2 = 10−3ωc (lower left) and λ1 = λ2 = 2 × 10−3ωc (lower right).

4. Decoherence time scale

In the final part of the paper, we address the dynamics of spatial decoherence of an ion in a
Penning trap. For that purpose, we assume the ion to be initially prepared in a Penning trap
coherent state. Such a class of states was recently derived in [21] for a symmetric trap (i.e.
β = 0 in (2)), and for simplicity we will assume a symmetric trap throughout this section
as well. To find the initial values η(0) and σ(0) corresponding to the Penning trap coherent
states is straightforward [21, 41], and, as demonstrated in [41], the Penning trap coherent
states have also the advantage to maximize the spatial degree of quantum decoherence. The
latter is defined as the ratio of the coherence length, l(t), of the reduced system to its ensemble
width W(t) [42–45]. It is not always possible to find an appropriate definition for these two
quantities, but they are known for systems with Gaussian density matrices of the form

ρ(x, x ′, t) = N (t) exp

(
−A(t)(x − x ′)2 − iB(t)(x − x ′)(x + x ′) − C(t)

(
x + x ′

2

)2
)

, (21)

where N (t) is a normalization factor. The coherence length and ensemble width are, in this
case, given by the amplitudes of the diagonal (x = x ′) and off-diagonal (x = −x ′) elements
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Figure 2. Time evolution of the dispersion σxx for a proton in a Penning trap, initially prepared
in an even (left panels) or odd (right panels) Schrödinger cat state. The evolution is shown for
three different dissipation strengths, from top to bottom: λ1 = λ2 = 0, λ1 = λ2 = 10−3ωc and
λ1 = λ2 = 2 × 10−3ωc .

of the density matrix,

l(t) =
√

1

8A(t)
, W(t) =

√
1

2C(t)
, (22)

and hence the decoherence degree becomes

δQD(t) = l(t)

W(t)
= 1

2

√
C(t)

A(t)
. (23)

Since we are dealing with a quadratic Hamiltonian and the initial state is of Gaussian type, the
Gaussian form remains preserved for all times and therefore we can directly adopt the definition
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above as a measure of spatial quantum decoherence. Furthermore, due to the structure of the
Hamiltonian and the restrictions imposed on the Lindblad operators, the density matrix of the
three-dimensional system ρ̂xyz can be written as the direct product

ρ̂xyz(t) = ρ̂xy(t) ⊗ ρ̂z(t). (24)

Although the time scale of the motion in the z-direction is much slower than that of the motion
in the xy-plane, the decoherence effects related to the z-motion will occur faster since the
asymptotic decoherence degree in harmonic potentials scales as ∼tanh(h̄ω/(2kT )) [43] and
ωz � ωx,y . To investigate spatial decoherence in the xy-motion, we require the expression
for ρ̂xy(t) in the coordinate representation,

〈x, y|ρ̂xy |x ′, y ′〉(t) = ρ(x, x ′, y, y ′, t). (25)

Since the time evolution of the first and second moments is known from (12) and (15), we
can directly use the well-known result for Gaussian–Wigner functions in quadratic potentials
[30, 46–48],

fW(r, p, t) = 1√
det(2πσ(t))

exp

(
−1

2
(ξ − η(t))Tσ(t)−1(ξ − η(t))

)
, (26)

to obtain the density matrix via the transformation

〈r|ρ̂|r′〉 =
∫

dp exp

(
i

h̄
(p(r − r′))

)
fW((r + r′)/2, p, t). (27)

Note that ξ denotes the phase space vector ξ = (r, p)T in (26) while the vector η(t) gives
the expectation value of ξ at time t. The integral above can be performed analytically, which
yields

〈x, y|ρ̂xy |x ′, y ′〉(t)= N exp

[
−K1(�x− 〈x〉)2 − K2(�y− 〈y〉)2 − K3(�x− 〈x〉)(�y− 〈y〉)

−K4�
2
x − K5�

2
y + K6�x�y + iK7(�x − 〈x〉)�x + iK8(�y − 〈y〉)�y

+ iK9(�x − 〈x〉)�y + iK10(�y − 〈y〉)�x +
i

h̄
(〈px〉�x + 〈py〉�y)

]
. (28)

Here, the brackets 〈· · ·〉 denote expectation values and for convenience we introduce new
coordinates,

�x = x + x ′

2
, �x = x − x ′,

�y = y + y ′

2
, �y = y − y ′.

(29)

The explicit form of the time-dependent factors K1, . . . , K10 is given in the appendix together
with the normalization factor N. For completeness, we also give the z-part of the density
matrix:

〈z|ρ̂z|z′〉(t) =
√

1

2πσzz

exp

[
− 1

2σzz

(
z + z′

2
− 〈z〉

)2

− σzzσpzpz
− σ 2

zpz

2h̄2σzz

(z − z′)2

+
iσzpz

h̄σzz

(
z + z′

2
− 〈z〉

)
(z − z′) +

i

h̄
〈pz〉(z − z′)

]
. (30)
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Note that in (28) and (30), the expectation values 〈ri〉, 〈pi〉 and the variances are functions of
time. We can now easily identify the coherence length and ensemble width according to (22)
in the x and y components in (28):

lx(t) =
√

1

8K1
, ly(t) =

√
1

8K2
,

Wx(t) =
√

1

2K4
, Wy(t) =

√
1

2K5
.

(31)

If, in addition, we demand the dissipation to be equal in both coordinates, i.e. λ1 = λ2, then,
since we consider a symmetric trap, the coherence lengths and ensemble widths will also be
equal at all times (lx(t) = ly(t),Wx(t) = Wy(t)), which, according to (23), allows us to define
a single spatial decoherence degree for the cyclotron motion

δQD(t) = 1

2

√
K1

K4
= 1

2

√
K2

K5
. (32)

Since the system is initially prepared in a Penning trap coherent state, we have, as shown
in [41], δQD(0) = 1, and with increasing time the quantum coherence decays until it has
reached a final asymptotic value. We would like to emphasize that, contrary to the previous
section, we consider a finite temperature in the diffusion coefficients (19) which is crucial for
the decoherence dynamics. Thus, even in the presence of an environment a coherent state
remains coherent for all times if the reservoir temperature is zero [43]. Figure 3 shows the
time evolution of the decoherence degree for different ions in the mass range from 4 amu to
129 amu at T = 4 K which is a typical operation temperature in most Penning trap experiments.
A comparison with the results of the previous section indicates that the decoherence time scale
is several orders of magnitude shorter than the relaxation time scale, which is a rather common
behaviour. This agrees with the thumb rule for estimating the ratio of the two time scales [45]

τrel

τdec
≈ σxx

L2
dB

, (33)

where σxx is the typical spatial spread of the system and

L2
dB = h̄2

2mkT
(34)

is the squared thermal de Broglie wave length. Indeed, inserting some typical parameters
(m = 50 amu, B = 5 T, T = 4 K, q = e, ωc = eB/m, σxx = h̄/(mωc)) we find the ratio
to be of the order of 105, which is about the ratio of the time scales in figures 1 and 2, that
display a relaxation process, to that of figure 3 that displays decoherence dynamics. In this
context, it should also be stated that this ratio becomes astronomically large for macroscopic
systems, and only for very few systems (e.g. some solid state devices like quantum dots)
both processes can occur on the same timescale. However, within the model adopted here
to describe environmental effects, the spatial decoherence turns out to be quite sensitive with
respect to the temperature, so that the decoherence time can be significantly prolonged by
cooling the setup down to the mK regime.

5. Summary

We studied the dynamics of a charged particle in a Penning trap within the Lindblad theory,
which allows us to incorporate environmental effects in a phenomenological way. We derived
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Figure 3. The time evolution of the spatial decoherence parameter, shown for different ions in the
mass range from 4 amu to 129 amu. The ions are listed in table 2 together with the experiment
from which the frequencies and magnetic field strengths were taken. The dissipation strength was
taken to be λ1 = λ2 = 1.0 × 10−3ωc at a temperature of T = 4 K.

Table 2. The description of curves (1)–(8) in figure 3, showing the ions for which the calculations
were performed and the experiment from which the input parameters, i.e. the frequencies and
magnetic field strengths, were taken.

Curve (1) (2) (3) (4) (5) (6) (7) (8)

Ion 4He2+ 6Li+ 18O+ 24Mg11+ 32S+ 40Ca19+ 87Rb2+ 129Xe5+

Magnetic field (T) 6.0 7.0 8.5 4.7 8.5 4.7 8.5 8.5
Experiment [49] [50] [51] [52] [53] [54] [55] [56]

the equations of motion for the first and second moments and presented an analytical solution
of the latter. For the particular example of a proton moving in a Penning trap, we investigated
the time-behaviour of the dispersions and made a comparison to earlier results. It is found
that in the limit of vanishing environmental coupling strength, the dynamics agrees with
the one obtained from the time-dependent Schrödinger equation without dissipation while
with increasing coupling strength the oscillations in the dispersions become more and more
damped and approach finite asymptotic values. We also suggested a possibility of estimating
the spatial decoherence time scale for ions in a Penning trap using recent experimental setups
as examples. Within the model we used, the decoherence time scale at a temperature of
T = 4 K is found to be about τdec ≈ 100 ps. This is much shorter than the estimated relaxation
time which is of the order of 1 μs in the considered weak coupling case λk ≈ 10−3ωc. The
model presented here is limited by the Markovian condition and therefore cannot be used to
describe strongly damped dynamics, but, apart from its simplicity, it has the advantage that
the environmental effects can be taken into account without being specified explicitly. At the
same time, additional information is necessary to relate the phenomenological parameters to
physical quantities, e.g. in the case of collisional decoherence reliable scattering rates off the
residual gas atoms are required to find appropriate values for the dissipation constants λk .
The temperature of the heat bath, however, can be taken into account through the diffusion
coefficients, which considerably influences the decoherence time scale.

10
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Appendix. Explicit form of the factors and normalization in equation (28)

The time-dependent normalization factor N and the time-dependent amplitudes K1, . . . , K10

in (28) can be explicitly given by means of the covariance submatrix of the xy-motion,

S =

⎛
⎜⎜⎝

σxx σxy σxpx
σxpy

σyx σyy σypx
σypy

σpxx σpxy σpxpx
σpxpy

σpyx σpyy σpypx
σpypy

⎞
⎟⎟⎠ , (A.1)

the time evolution of which is directly obtained from the full covariance matrix σ (see (15)).
Denoting by C = S−1, the inverse of the above matrix and its elements by cij , the explicit
expression for the normalization reads

N =
√

4π2

det(2πS)
(
c33c34 − c2

34

) (A.2)

and the amplitudes are given by

K1(t) = c11

2
+

c13c14c34 − 1
2

(
c2

13c44 + c2
14c33

)
c33c44 − c2

34

, (A.3)

K2(t) = c22

2
+

c23c24c34 − 1
2

(
c2

23c44 + c2
24c33

)
c33c44 − c2

34

, (A.4)

K3(t) = c12 +
c34(c13c24 + c14c23) − (c13c23c44 + c14c24c33)

c33c44 − c2
34

, (A.5)

K4(t) = c44

2h̄2
(
c33c44 − c2

34

) , (A.6)

K5(t) = c33

2h̄2
(
c33c44 − c2

34

) , (A.7)

K6(t) = c34

h̄2
(
c33c44 − c2

34

) , (A.8)

K7(t) = c34c14 − c44c13

h̄
(
c33c44 − c2

34

) , (A.9)

K8(t) = c34c23 − c24c33

h̄
(
c33c44 − c2

34

) , (A.10)

K9(t) = c34c13 − c14c33

h̄
(
c33c44 − c2

34

) , (A.11)

K10(t) = c34c24 − c23c44

h̄
(
c33c44 − c2

34

) . (A.12)
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